Extreme Parallel Architectures for the Masses

Tarek El-Ghazawi
George Washington University

Guy Lemieux
University of British Columbia

Multicore processors are now commodity items, and this has created an unprecedented buzz about exploiting parallelism to maximize performance. This publicity has renewed interest in a long-standing problem: how much parallelism can we really exploit? Can extreme parallel computing be successfully delivered to the masses?

Several architectures are poised to exploit parallelism to achieve orders-of-magnitude speedup, including FPGAs, GPUs, Cell, and Manycore processors. Which of these architectures is the best approach? Or is there another stealth architecture that will be better? For a given application, how does one decide which approach is best?

All of these approaches work extremely well in their intended application domain. However, they all strive to become more general-purpose in nature. Will only one or two work out in the long run? Or, is a marriage in the cards for several of these architectures? What are the main obstacles standing in their path?

Panelists

1. Martin Langhammer, Chief Scientist, Altera
2. Dr. David Kirk, Chief Scientist, NVIDIA
3. Mike Butts, Fellow, Ambric
4. Dr. Fabrizio Petrini, IBM TJ Watson Research Center
5. Prof. Thomas Sterling, Louisiana State University

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures; C.5.4 [Computer System Implementation]: VLSI Systems

General Terms
Algorithms, Design, Performance

Keywords
Custom compute engine, FPGA, parallel processing, reconfigurable computing